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Abstract

Parallelization can be achieved by either control or domain decomposition. The
latter was tried for analytic (by Phipps et al’®?0:21) and semianalytic (by Wallace?®)
propagators. Neal and Coffey’* discuss the domain decomposition for special perturba-
tions. The control decomposition idea is inefficient for analytic propagators (Phipps!®),
because the computation time is too short. In this report we discuss a control de-
composition approach to parallelize a numerical orbit propagator which may be more
computationally intensive.
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1 Introduction

The orbit of an earth satellite may be predicted by solving the differential equations of
Newtonian mechanics. The various approximate methods for solving the differential equation
in this case may be divided into three categories: analytical, semianalytical, and numerical.

Within the next few years the military expects to increase the number of objects cataloged
and to require more accurate predictions. With a commensurate improvement in sensor data,
the accuracy of the predictions could be improved to the order of tens of meters (depending
on time from epoch) with a semi-analytical theory or to meters with a completely numerical
solution. However, these improvements would be obtained at the expense of a great increase
in computation time using a numerical method on a serial computer.

Fonte et al* have compared the above three categories of propagators as -implemented
in R&D GTDS?® in various orbital regimes. It was shown that accuracy of the Draper
semianalytic (DSST) propagator when used with “optimal” parameters is close to that of
the numerical, but the CPU time required is much less. Testing with real data is required
to convince the users to adopt DSST. Also such a move requires training of potential users.
Thus the most cost effective way to get more accurate predictions for more orbiting objects in
a short amount of time would require the use of a parallel version of a numerical propagator.

In the next section we discuss parallel computing as applied to orbit propagation. In
section 3, numerical propagators will be discussed. The experience gained with a control
decomposition version of special perturbations orbit propagator is described in section 4.

2 Parallel Computing

Parallel computing is defined as the efficient form of information processing emphasizing
the concurrent computations and manipulation of data to solve a single problem (see e.g.
Hwang and Briggs'®). Parallel computers may be classified according to their architecture.
Flynn® has introduced a scheme to classify computers into four categories based on the
multiplicity of instruction and data streams. The serial computers are called SISD (Single
Instruction Single Data). Array processors are called SIMD, and most multiprocessors are
MIMD. Another way of classification is by topology.

Parallel computing offers one option to decrease the computation time and achieve more
real-time results. Use of parallel computers has already proven to be beneficial in reducing
computation time in many other applied areas.

Two common measures of effectiveness, accounting for both the hardware and the algo-
rithm are speedup and efficiency. The speedup, S,, of an algorithm is defined as

T, Ty

Sp = ?Z—: or —f‘ (1)
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where T is the time on a serial computer and 7; is the time on a parallel computer having
2 processors. The efficiency, F,, is defined by

E, = 'S‘E (2)

p

and it accounts for the relative cost of achieving a specific speedup. many factors could
possibly limit the efficiency of a parallel program. These factors include the number of se-
quential operations that cannot be parallelized, the communication time between processors,
and the time each processor is idle due to synchronization requirements, see e.g. Quinn?2.

2.1 Hypercube

The iPSC/2 INTEL hypercube'! is a MIMD multicomputer with a hypercube topology. The
computer consists of a system resource manager (host) and 2" individual processors, called
nodes (7 is the dimension of the cube). The computing nodes may be augmented by a vector
extension module for vector operations. Communication among the nodes and the host are
completed through message passing. See Figure 1 for hypercubes with various dimensions
n.

Figure 1: Hypercubes with dimension n = 0,1,2,3,4



2.2 Parallel Virtual Machines

Parallel Virtual Machine (PVM) is a small (~1 Mbytes of C source code) software package
that allows a heterogeneous network of Unix-based computers to appear as a single large
distributed-memory parallel computer. The PVM package is good for large-grain parallelism;
that is, as least 100 kbytes/node. The term virtual machine is used to designate a logical
distributed-memory computer and host is used to designate one of the member computers.

The PVM software, developed at Oak Ridge National Laboratory (see Dongara et al® and
Sunderam et al**) supplied the functions to automatically start up tasks to communicate and
synchronize with each other. A problem can be solved in parallel by sending and receiving
messages to accomplish multiple tasks, similar to send and receive on the hypercube.

PVM handles all message conversion that may be required if two computers use different
data representations. PVM also ensures that error messages generated on a remote computer
are displayed on the user’s local screen.

Parallelization could have been accomplished using a specific parallel multicomputer,
such as the INTEL hepercube!!. These systems tend to be large and expensive. While PVM
may not accomplish the tasks as fast as, say, an INTEL iPSC/2 hypercube, the process
execution times were satisfactory for the application tested.

<

2.3 Decomposition Strategies

Given a program and its associated data set, there are two primary ways to process it in
parallel. The program can be separated into individual sections (called control decomposi-
tion) with a processor dedicated to compute its respective part, much like a factory assembly
line. The other method domain decomposition is to divide up the data set and send parts
to many separate processors all running the same algorithm, but on different data.

Figure 2 graphically presents these relationships between the node distributing data, the
node collecting results and the workers.

In 1992, the first result on parallelization of orbit propagators was obtained by our
student (W. E. Phipps'??*?!). These results were presented at the 1993 Space Surveillance
Workshop at M.I.T. Lincoln Laboratory?’. During the past five years a similar idea (domain
decomposition) was applied to the analytic propagators SGP and SGP4/SDP4 (see Ostrom?®,
Brewer!, Neta et al’®, and Stone?®). Our students developed a model to find the optimal
number of processors (in the sense that the algorithm is most efficient). This optimal number
depends on the satellite motion model used, the number of objects and the number of calls to
the propagator for each object. Ostrom!® and Neta et al'® have shown that one can achieve
near 100% efficiency. Wallace?® suggested the same idea for the semianalytical propagator
DSST. Neal and Coffey'* demonstrated how to maintain the space catalog using similar
parallelism idea for special perturbations.

The control decomposition idea for analytic propagators is inefficient (as demonstrated




Figure 2: Domain decomposition

by Phipps’®) since the analytic propagators are not computationally intensive.
In the next section, we discuss the possible numerical orbit propagators and their parallel
version.

3 Numerical Propagators

Neta and Lustman have developed a parallel numerical ODE solvers for both linear'? and
nonlinear systems’>. The idea here!® is to use extrapolation. One can use Euler’s or Gragg’s
method to solve the system

Y- 0., t<t<b 3)

subject to
y(to) = yo (4)

For example, Gragg’s method
zij2 = Yo+ 2f(to,v0)
Y1 = Yo+ hf(tye, 21)2)
Zng1/2 = Zn-1j2+hf(ta,yn)

Ynt1 = yn+hf(tn+l/272n+l/2)



has truncation error

yn_y(nh) - B2h2+B4h4+--. (6)
Each one of the N processors uses an ODE solver with
N
= ©

thus the common points are t; = to + (j — 1) NH.
Given
{hﬂy(ti’hr)lr=0)1""3N_1; i=172$"'7M}7

the solution at those M points in (to,b) is computed by the same scheme by all N possible
h's). For polynomial extrapolation we construct a table of values T, as follows

TrO = y(ti, hr)

T = Do+ 28t =Tt g g N (8)
L3\ _1
(hr+s)

Extrapolation will yield O(h?") accuracy for Gragg’s scheme.
In the following table we show which processor computes which part of the solution.

processor step procl proc2 proc3d proc4 procd proc6 proc7
Too 1 8H

Tn
11, To3
Ty 3  H Ti, Tt
T T3 Tos
T30 4 2H T2 T4 Toe
T3 T Iis Tor
Ty 9 ¢H T3 Toq Tie
Ty 133 Tys
Tso 6 tH Ty T34
Ts: Ty
Tso 7 %H Tss
Te1
T 8 H

Table 1: Extrapolation assigned to each processor

The efficiency of this algorithm (based on low order integrator and extrapolation) is over 75%.
These results were presented in Numerisk Institut in Denmark!® and in the Fourth Interna-
tional Colloquium on Differential Equations in Bulgaria!”. These algorithms were combined
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with a numerical propagator to get a parallel special perturbations model. Fukushima® dis-
cusses the round-off error reduction in the extrapolation methods as they apply to orbital
motion.

Fukushima® has suggested a numerical method based on Picard iteration and Cheby-
shev polynomials for approximating orbital motion. The idea is to integrate the differential
equation

d
= =Sy, a<t<o )
subject to
y(to) = o, a<t<h (10)

Assuming y(©)(¢) is an initial guess for the iteration, then

t
v = 0 + [ fy™(s)s)ds,  a<t<bn=01,.. (11)
0

Both y(¢) and f are expanded in Chebyshev polynomials of the first kind, with coefficients
Y;, Fj, respectively.

Given all the coefficients Y;-(n), one can compute y,(cn“) = y(")(t£n+l)).

will give the right hand side, f{"*" = f(y,(cnﬂ),tfcnﬂ)). From this one can compute the
coefficients Fj(nH) and Y;("H).

Fukushima® claims that “Clearly the present method is accelerated by using parallel
computers. This is because the evaluation of the integrand can be done in parallel. Since
the computational time of the numerical integration is mainly occupied by the integrand
evaluation, we can expect a significant gain in real-time speed. In principle, the ratio of
speed-up will become as many as the number of processors.” This last sentence means
that the efficiency is close to 100%. I believe that there is enough sequential work that will
cause degradation of the efficiency, and one should experiment with the method on a parallel
machine to get the actual efficiency. Several private communications with Fukushima reveal
that in follow up papers™®, he developed a vectorization of the method on a Fujitsu VX/1R
(with vector length of 2048). This vector method shows a gain of more than a 1000 times,
which is around 50% efficiency.

For satellite problems, y(t) and f(y(¢),¢) in (9) are arrays.
where 7, v, and @ are the position, velocity and acceleration vectors, respectively. Vallado?®
discusses fourth-order Runge-Kutta method (single step), as well as Runge-Kutta-Fehlberg
(variable step size) and Adams-Bashforth-Moulton predictor-corrector (multi-step) methods.
To obtain fourth-order or higher, one may use extrapolation with first-order Euler’s method
or second-order Gragg’s method as discussed above. Using N processors and extrapolating

Gragg’s method, one can get 2N-order accuracy. This idea is of control decomposition type.
It yields higher efficiency than the Picard-Chebyshev method advocated by Fukushima.

This, in turn,

S Yy
QL Q@
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4 SPEPH

In this subsection we give the results of our experimentation with SPEPH, the special per-
turbation code used by AFSPACECOM. We are not comparing the accuracies attained by
various numerical propagators. We are only interested in the computation time in order to
assess the feasibility of control decomposition. To this end, we have ran one example where
the orbit is propagated to 15 minutes ahead. It is clear that the total run time of 3.19
seconds is too short to use control decomposition. If we now increase the length of period of
propagation to 3 days and 15 minutes, then the total run time increases to 19.1 seconds, most
of it (over 90%) is in the subroutine SPOOX, the SP integration driver. Even this is not
computationally intensive enough. Several other orbits were propagated for various length
of time and the total run time was always too short to justify control decomposition. I am
sure that the reason that SPEPH is not used on all object is the fact that one requires many
calls to the propagator to accomplish the differential corrections and update. Therefore one
should consider the domain decomposition idea as implemented by Neal et al'*. A more
radical solution is to reconsider the differential correction process and see if one can save on
the number of calls.

5 Conclusions

It has been shown that several methods in the literature yield an efficincy of over 75% for the
solution of systems of first order ordinary differential equations such as the orbit prediction
problem. We have access to a special perturbations code currently in use and our assessment
of. the efficiency of its control decomposition was discussed.
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